Filtern
Dokumenttyp
- Konferenzveröffentlichung (2)
- Aufsatz (1)
- Buch (Monographie) (1)
Gehört zur Bibliographie
- nein (4)
Schlagworte
- Stress (4)
- Gesundheitsförderung (2)
- Smartphone (2)
- TrackYourStress (2)
- GPS (1)
- Maschinelles Lernen (1)
- Studie (1)
- Zeit (1)
A longitudinal pilot study on stress-levels in the crowdsensing mHealth platform TrackYourStress
(2019)
Background: The mobile phone app, TrackYourStress (TYS), is a new crowdsensing mobile health platform for ecological momentary assessments of perceived stress levels.
Objective: In this pilot study, we aimed to investigate the time trend of stress levels while using TYS for the entire population being studied and whether the individuals’ perceived stress reactivity moderates stress level changes while using TYS.
Methods: Using TYS, stress levels were measured repeatedly with the 4-item version of the Perceived Stress Scale (PSS-4), and perceived stress reactivity was measured once with the Perceived Stress Reactivity Scale (PSRS). A total of 78 nonclinical participants, who provided 1 PSRS assessment and at least 4 repeated PSS-4 measurements, were included in this pilot study. Linear multilevel models were used to analyze the time trend of stress levels and interactions with perceived stress reactivity.
Results: Across the whole sample, stress levels did not change while using TYS (P=.83). Except for one subscale of the PSRS, interindividual differences in perceived stress reactivity did not influence the trajectories of stress levels. However, participants with higher scores on the PSRS subscale reactivity to failure showed a stronger increase of stress levels while using TYS than participants with lower scores (P=.04).
Conclusions: TYS tracks the stress levels in daily life, and most of the results showed that stress levels do not change while using TYS. Controlled trials are necessary to evaluate whether it is specifically TYS or any other influence that worsens the stress levels of participants with higher reactivity to failure.
Mobile apps are increasingly utilized to gather data for various healthcare aspects. Furthermore, mobile apps are used to administer interventions (e.g., breathing exercises)to individuals. In this context, mobile crowdsensing constitutes a technology, which is used to gather valuable medical databased on the power of the crowd and the offered computationalcapabilities of mobile devices. Notably, collecting data withmobile crowdsensing solutions has several advantages comparedto traditional assessment methods when gathering data overtime. For example, data is gathered with high ecological validity, since smartphones can be unobtrusively used in everyday life. Existing approaches have shown that based on these advantages new medical insights, for example, for the tinnitus disease, can be revealed. In the work at hand, data of a developed mHealth crowdsensing platform that assesses the stress level and fluctuations of the platform users in daily life was investigated. More specifically, data of 1797 daily measurements on GPS and stress-related data in 77 users were analyzed. Using this data source, machine learning algorithms have been applied with the goalto predict stress-related parameters based on the GPS data of the platform users. Results show that predictions become possible that (1) enable meaningful interpretations as well as (2) indicate the directions for further investigations. In essence, the findings revealed first insights into the stress situation of individuals over time in order to improve their quality of life. Altogether, the work at hand shows that mobile crowdsensing can be valuably utilized in the context of stress on one hand. On the other, machine learning algorithms are able to utilize geospatial data of stress measurements that was gathered by a crowdsensing platform with the goal to improve the quality of life of its participating crowd users.
The mobile phone app, TrackYourStress (TYS), is a new crowdsensing mobile health platform for ecological momentary assessments of perceived stress levels.
Objective: In this pilot study, we aimed to investigate the time trend of stress levels while using TYS for the entire population being studied and whether the individuals’ perceived stress reactivity moderates stress level changes while using TYS.
Methods: Using TYS, stress levels were measured repeatedly with the 4-item version of the Perceived Stress Scale (PSS-4), and perceived stress reactivity was measured once with the Perceived Stress Reactivity Scale (PSRS). A total of 78 nonclinical participants, who provided 1 PSRS assessment and at least 4 repeated PSS- 4 measurements, were included in this pilot study. Linear multilevel models were used to analyze the time trend of stress levels and interactions with perceived stress reactivity.
Results: Across the whole sample, stress levels did not change while using TYS (P=.83). Except for one subscale of the PSRS, interindividual differences in perceived stress reactivity did not influence the trajectories of stress levels. However, participants with higher scores on the PSRS subscale reactivity to failure showed a stronger increase of stress levels while using TYS than participants with lower scores (P=.04).
Conclusions: TYS tracks the stress levels in daily life, and most of the results showed that stress levels do not change while using TYS. Controlled trials are necessary to evaluate whether it is specifically TYS or any other influence that worsens the stress levels of participants with higher reactivity to failure.
(JMIR Mhealth Uhealth 2019;7(10):e13978) doi: 10.2196/13978
Mobile apps are increasingly utilized to gather data for various healthcare aspects. Furthermore, mobile apps are used to administer interventions (e.g., breathing exercises) to individuals. In this context, mobile crowdsensing constitutes a technology, which is used to gather valuable medical data based on the power of the crowd and the offered computational capabilities of mobile devices. Notably, collecting data with mobile crowdsensing solutions has several advantages compared to traditional assessment methods when gathering data over time. For example, data is gathered with high ecological validity, since smartphones can be unobtrusively used in everyday life. Existing approaches have shown that based on these advantages new medical insights, for example, for the tinnitus disease, can be revealed. In the work at hand, data of a developed mHealth crowdsensing platform that assesses the stress level and fluctuations of the platform users in daily life was investigated. More specifically, data of 1797 daily measurements on GPS and stress-related data in 77 users were analyzed. Using this data source, machine learning algorithms have been applied with the goal to predict stress-related parameters based on the GPS data of the platform users. Results show that predictions become possible that (1) enable meaningful interpretations as well as (2) indicate the directions for further investigations. In essence, the findings revealed first insights into the stress situation of individuals over time in order to improve their quality of life. Altogether, the work at hand shows that mobile crowdsensing can be valuably utilized in the context of stress on one hand. On the other, machine learning algorithms are able to utilize geospatial data of stress measurements that was gathered by a crowdsensing platform with the goal to improve the quality of life of its participating crowd users.